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the Cholesky factor of R. This fast Kalman gain algorithm may be read out

of the LeRoux-Gueguen algorithm or out of the Friedlander algorithm.

1., Iatroduction

The Levinson recursions provide am efficient algorithm for factoring
the inverse of a Toeplitz correlation matrix R into its upper and lower
triangular Cholesky factors., These factors ©produce a Gram—Schmidt
orthogonalization of the nunderlying time series. The recursions are
routinely used to compute reflection coefficients for implementing whiteming
and predicting filters in lattice form. They are also used to go back and
forth between reflection coefficients, order—increasing whiteners, and
correlations. In this paper we tell the dual of this story, based on 2
factorization of the correlation matrix R, itself. Onme of’our-i;in ﬁuffoses
is to show how the Levinson recursion for going back and forth between
correlations, reflection coefficients, and order—increasing whiteners may be
replaced with a dual set of recursions for going back and forth between
correlations, reflection coefficients, and order increasing synthesizers. !

Ve use the Levinson recursions to derive the LeRoux—Gueguen algorithm
[1] for factoring a Toeplitz correlation matrix R, column-by-columm, Ve
organize the algorithm into a coupled set of vector recursions and show that
it is, indeed, a lattice algorithm., By re-ordering the columm variables
into rows, we convert the LeRoux—Gueguen algorithm into Friedlander's
lattice algorithm [2] for factoring a Toeplitz correlation matrix, row-by—
row. (Conversely, we could have re—ordered Friedlander's algorithm to
obtain the LeRoux—-Gueguen algorithm,) This discussion shows the two
algorithms to be two different ways of looking at a fast Cholesky

factorization that is also called the Shur [3], Berlekamp-Massey [4]), or
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Abstract

We use the Levinson recursions to derive the LeRoux-Guegpen algorithm
for factoring a Toeplitz correlstion matrix R, column-by-columm. Ve
organize the algorithm into a coupled set of vector recursions and show
that it is, indeed, a lattice algorithm. By re-ordering the column
variables into rows, we convert the LeRoux-Gueguen algorithm into
Friedlander’'s lattice algorithm for factoring a Toeplitz correlation matrix,
row-by—row. This shows the two algorithms to be different ways of looking
st a fast Cholesky factorization that is also called the Shur or Berlekamp-
Massey algorithm,

We review how fast Cholesky factorizations are usually used to compute
reflection coefficients from correlations. Then we show bhow the
factorizations may be run backwards to compute Cholesky factors and
correlations from reflection coefficients, This generalizes a result
usually attributed to Robinson and Treitel. One of our main purposes is to
emphasize that the Levinson recursions for going back and forth between
correlations, reflection coefficients, and autoregressive filter parameters
may be replaced with a dual set of recursions for going back and forth
between correlationms, reflection coefficients, and moving average filter
parameters.

Vhen the correlation matrix R describes an auntoregressive moving
average time series, then each column of the Cholesky factor of R consists
of a p-dimensional Kalman gain vector im its first p non—zero entries,
followed by a homogeneous recursion for subsequent values. This means the
fast Cholesky factorization of R may be further speeded up by using these
Kalman gains to set initial conditions in a homogemeous recursion, It means

also that the Kalman gains obey the same vector recursions as tkhe columms of
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Morf [5] algorithm. When we run the recursion backwards to obtain Cholesky
factors and correlations from reflection coefficients we generaslize the
result of Robinson and Treitel [6] for obtaining correlations from
reflection coefficients.

When the correlation matrix R describes an autoregressive moving
average (ARMA) time series, then each columm of the Cholesky factor for R
consists of a p-dimensional Kaslman gain vector im its first p mnon-zero
entries, followed by a homogeneons recursion for subsequent values [7].
This means the fast Chclesky factorization of R may be further speeded up by
uvsing these Kalman gains, together with ARMA parameters, to set imitial
conditions and runm a homogeneous recursion to generate columms [7]. It
means also that the Kalman gains obey the same vector recursions as the
columns, themselves [7], [8]. Thus the fast Kalman gains may be read out of
the LeRoux—-Gueguen algorithm, or out of the Friedlander algorithm, by
reading internal variables out of a lattice. The algorithm may be slightly
modified to produce the Morf, Sidhu, Kailath algorithm [9] for computing
Kalman gains on a fixed length, time-varying lattice [11].

The diagram in Figure 1 summarizes our perspective and our results.
The right side of the diagram we take to be well understood: Levinson
recursions may be used to factor B! and to go back and forth between
correlations ({r;}, order increasing whiteners {a"}, prediction error
variances {cnz} and reflection coefficients {k,}. The left size of the
disgram we take to be less well understood and it is our intention to
clarify it and extend known results concerning it. To this end we show how
the LeRoux—Gueguen and Friedlander algorithms mey be used to factor R and to
g0 back and forth between correlations {rn}. order increasing synthesizers

2y,

{h®}, prediction error variances (o, and reflection coefficients {k ].
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These results are used to speed up the Cholesky factorization in the ARMA

case and to read the fast Kalman gein algorithm out of the factorization.

2. Linear Statistical Models for Stationary Sequences

Let x = (x5, Xg,.+.,Xp.q)’ denote t real random variables drawn from &
wide sense statiomary random sequence with mean value sequence zero and

correlation sequence {r }. The first two moments of x are

Ex = 0
ro r1 ...rt—l
fl to rla..ft_z
E_x__x_' =R = {r|i—j|} = . .
To_q oo T, T,

Call R & (txt) Toeplitz correlation matrix,

Define the exchange matrix J:

JI =1
This matrix turns colummn vectors up-side down and row vectors right-side
left:
IJx = (x4 9, ceer x5)'
x'T = (x5 eees Xx4)
The vector x is drawn from a wide-sense stationmary sequenmce that does not

know forward time from reverse time. Therefore Jx has the same moments as
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EJx = 0

EJx(Jx)' = JRY = R

This says R is not only Toeplitz, but also centro— or J-symmetric.

2.1 Synthesis

The correlated vector x may be synthesized from an uncorrelated vector

g

x = Hu ; Egn’' =1
R = HD2H'
The diagonal matrix D2 and triangular matrix H are defined as follows:

2

2 _ .. 2 2
D" = diag (oo. Ogr ooes at_l)
1
hg 1
0
L] 0
- 1 =
H =|, ho =
. 1
0 1 t-2 0 1 t-1
ht~1 ht—2 ‘e h1 1 h ™ ... h
n _ n n '
h - (1 hl s o ht.n-‘l)

We call HD?H' a lower-upper (LU) Cholesky factorization of R and x = HDu a
forward synthesis of x.

The super and subscripting of elements in H is somewhat arbitrary, but

generally, hi tells how the random variable uj is used to build the random

variable ‘i+j'

The vector Jx may be synthesized as follows:




Jx = JEIIDITu

= GCJu
R = 6C2G’

The matrices G and C are defined as follows:

2 Y 2 2 2
C IDY = diag (at—l' cees G4, 65)
t-2 1 0 t-1 1 0
1 by T ... b, B,_, Jao T ... Jn  Jn
1 .
G =JHT = 1 * =
: 2o
0 * 0
‘1 h1 0
1

¥e call GC26' an vpper—lower (UL) Cholesky factorization of R and Jx = GCJu

a8 backward synthesis of Jx.

2.2 Analysis

The random vector x may also be analyzed to produce the uncorrelated
random variables Du in a Gram—Schmidt procedure:
Ax = Du

ARA’ = D?

The triangular matrix A' is defined as follows:




O MRS

1 2 t-1 0 1 t-1
1 &) B, - . o8 Ja Ja~., . . Ja

1 ni *
A’ = -

0 1 a;_l 0

1

"= a; S K
- n

We call ARA' = D2 an upper-lower Cholesky factorization - and Ax = Du a

forward analysis or Gram—Schmidt orthogonalization of The first of these
interpretations comes from the following manipulation of = Dz:

(ARA")"1 = p72

Bl =ap72
The vector !n is the ‘" order whitener and the vector (a;. a;. ....a:) is
the ntk order predictor,

The vector Jx may be analyzed as follows:
JAJJx = JDIJu

BJx = CJu

BRB' = C2

The matrix B' is defined as follows:

1 0
t-1.
8y 1 ) 0
B' = JA'Y = — =
‘t-l 1 1 .t-l ‘1 ‘0
-1 " 8] a R 8

We call BRB'

cZ . lower—upper Cholesky factorization of B! and BlJx = Qu

a8 backward analysis of Jx. The first of these interpretations comes from

the following manipulation of BRB' = c2.
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(BRB')~1 = ¢2

1 =pc2B
2.3 Summar
From these factorizations of R and g1 we have these further

connections between analysis and synthesis parameters:

Al At =81

H
=81 B =¢V

The LU and UL factorizations of R may therefore be rearranged as follows:
RA’ = HD?

6c?

These results for analysis and synthesis, and for factorization of R

RBI

and R'l, are summarized in Figure 2. It is already obvious, and our fast
algorithms will confirm it, that H(G) and B’'(A’') play dual roles. This
leads us to suspect that recursions for columms of B'(A’') should lead to

similar recursions for columns of H(G).

P w-‘
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Ef Synthesis Analysis
ii x = Hbg Az =Du
3 Forward R =828’ (L0) B! = A'D"2a (DL)
5' RA' = HD? R lg = A'p2
i
3
2 Jx = GJu Bx = CJg
ii Backward R =6c%! (o) k! =B'C2B (L)
f | RB’ = GC2 R 16 = B'c2
H = JGJ (L) A’ =JB'J (D)
Connections G = JHY (U) B' = JA'J (L)
D =JCJ pl =3¢l
c = JpJ ¢l =113
B =4a"1 Ar =gl
¢ = p1 B* =61

Figure 2, Forward and Backward Analysis and Synthesis
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3. Fast Algorithms

Begin with the correlation matrix R and the following rearrangements of
its UL and LU factors:
RA' = HD?

RB' = GC2

3.1 Levinson Recursions

Call Jgn+1 the vector of non-zero elements in the (n+l) column of A’

n+l

and a the vector of non-zero elements in the (n+l) columm of B’, counting

from the right-most column of B’. Then, from the factorization above, we

have the relstions

T, Ty eeo T +1 0
L] + -
T . J!n 1 -
E ri L]
4 T 02
Faet 000 T2 o | | J | "n+l
T, Ty e rn+1' T 62 1
n+l
1 : n+1 0
. ]
: ! :
Tae1 00 Ty T ] | | | o ]
Note what happens when J!nﬂ and !n+1 are replaced by the previous

columns Ja® and a®:
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[r T, vee T 0 'a ]
o 1 n+l a+l
T 0
J!n = .
0
2
fn+1 see Ty T | ] }cn) ]
n
c? = 2 a, r
n+l i n+l-i
i=0
T, Ty oo rn+1 c2
n
T, n 0
! .
0
r £, T 0 n
Lot *°" "1 "o ] | J n+1 |

Choose Ja®1 and a®1 to be the following coupled recursions im order to

satisfy the factorizations:

- . . -
0 n
= + kn+1 !
Ly gnﬂj Ly gn. [0 |
;n+1 ] 0 1 0 ]
= + k
0 n+l JEnJ
2 n
°n kn+1 = ®n+1
2 2
o 41" {1- kn+1)°n

These are the celebrated Levinson recursions for sequentially building the
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whiteners !n’ or equivalently the columns of the A’ and B’ in the Cholesky

factorization of R 1.

Vectorized Form #1:

form by defining the following matrices:

1 o ... 0
1 0 1
A= . Q= . 0
o . ]
0
0. .. 0 1
JAY=0 JOoJ¥=A

Now the Levinson recursions are

+1 _ n
an —A!n+kn+101!

J!n+1 =g J!n + kn+1 A sn

A cross matrix representation for these recursions is

+1 n
.!n = n+1A!

Ja% = JR . JT A JT 4% =K 4y 0 Ta®

These equations may be put into a concise matrix

where the cross matrix K .4 = JK ,4J is defined as follows:

1 0 kn+1
xn+1 = *
0 . 0
kn+1 1
kn+1 0 1

Vhen the diagonals cross, the cemter term is (1+k_.4).
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This representation may be used over and over again to obtain the

iterated cross matrix recursion

n+l _
a Km_lenA...KzAKlAl

where 1 is the 1x1 matrix equal to unity. The representation may also be
inverted to give a handy formula for running the Levinson recursions
backwards:

o _ xfl n+l

As n+1 2

The inverse is

1 0 —kn+1
1
o | 2 -11 0 0
xn+1 (1 kn+1) *
ko1 0 1
Of course k = .n+1. In these recursions, a® and Ja® are vectors of
n+l n+l = =

incressing dimension.

Vectorized Form #2: To obtain vectorized equations in which dimensions

are constant, let A" denmote a t-vector comsisting of Ja®, followed by zeros,

and let B demote a t-vector comsisting of a®, followed by zeros:

- [ !n]
A" - 0 B" - 0

The vector A® is the 2t® column of A’, but B® is not the ntP column of B'.

én * Jgﬂ
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The Levinson recursions produce the following recursions for A® and B®:

B = B 4k, T A

n+l n
é aTé+kn+1§n

The matrix T in these equations is a delay matrix:

0 1 0

This form of the Levinson recursions will simplifi our discussion of fast
algorithms as lattice algorithms,

Remarks: 1. Given the reflection coefficients {qu-l , the iterated

cross—-matrix recursion may be used to generate all of the order

increasing whiteners !n. This is equivalent to factoring R-l.
; 2 . ; t-1
2, Given oy = Tg and the reflection coefficients {kn]1 ’

prediction errors ai mey be generated recursively.

. . . 125 SN o JtHl
3. Given the highest order whitemer s ~, with kiyg ™ 8441 the

cross—matrix recursion may be used to generate &ll of the order-

decreasing whiteners a®, and sll of the order-decreasing reflection

coefficients kn = a:. In this way lattice parameters are built from

filter coefficients. The stability of a filter built from !t+1 is
tested by checking for |k | < 1 for a=1,2,...,t-1. This is the Shur-

Cohn test.
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4, The first row of the equation RA' = Hp? gives the following

recursion for computing correlations from whitening filters:

. I .
1 n=-1

These remarks, coupled with the Levinson recursions themselves,

T complete the discussion of the right side of Figure 1,

3.2 LeRoux-Gueguen Algorithm

3 Return again to the following re—arrangement of the UL factorization of R:

‘ BRA’ = HD?
Write out the nth column of this equation:
o Tge v o T
n
Ty Tye o o T 09 Ja 2 0
= g
n
n
71 © e T gen] ] h ]

Ta o L To
. n 2 n
| q | P o7
R
. . n L]
ft-l . . . rt-l—n, i |
or

o%h® = R Ja®
- n -

A related vector, which will be needed in our development, is Rngn:
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[

-
¢
_‘ij
L
: r T-1°°* To I x
r [ln] r } o b o In =
n+l Rn 1 - - n+l 1 0 -
: : c R : 0
t-1 e t-1-n r . r
| [ "t-1""" t-1-n " t-n-2]

[ 0
2 n 2
o | g = a
n n | an
B
The first term of g®, demoted g®;, is zero. Note the definition of R,y and

summarize these results as follows:

czhn = R Jln
n- n -
2 n n
o = a

[

Vectorized Form #1:

[ B
"
w

n n+l

Our objective is to derive recursions for h%, g@,

and o:. In the Appendix, the Levinson recursions for Ja® are used to derive

the following results:

2 a+l 2 g , D
“n+1 b = % A" b+ kn+1 “n 8" s
n+l 2 _, n 2 R |
%2+¢1 & = % N kn+1 °n A" b

2 2 2
%n+1 = °n(1 kn+1)
nd n
kn+1 = =2 element of g

M e e .

P
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Because ‘n # Ign. there is no handy cross—matrix representation.

Vectorized Form #2: Now define H® to be a t-vector comsisting of

2

o y“. preceded by zeros, and G® to be a t-vector consisting of ai gn.

preceded by zeros:

The vector H® is the 2t® column of H, but G" is not the nth

column of G.
E® # JG".

The LeRoux-Guegnen recursions may now be writtem

§n+1 = gn + Kp4q T!n

§n+1 = TH® + K41 Gt

where T is still the delay matrix.

3.3 Summary

In order to emphasize the striking similarity in the Levinson-Durbin
and LeRoux—Gueguen algorithms, we say that they both obey the recursion

gn+1 = gP + kn+1‘TYn

!n+1 = TYn + Kp4q gn

These equations are reversed (more om this in the next section) as
follows:

" = gn+1 - kg4 VR

vl e y® ek, 00
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The iteration for incressing order filters in the Levinson recursions is
obtained by setting initial conditions as follows:

_Yo = I_’o = (1,0,...:0).
The LeRoux—-Gueguen algorithm is obtained by setting
b go = (rootlv---'rt_l)': Yo = (o'rl"..'rt"l)'
[- In the LeRoux—-Gueguen recursions, the variance and reflection
coefficients are obtained as follows:

2

6,° = (n+l)st element of v

k, = -(n+2)nd element of gn/cn2

These recursions are discussed as vector recursions for a vector processing

machine in [10].
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4. Lattice Implementations

Figure 3 contains four different lattice cells: (a) and (b) are un-
normalized &nd normalized forward lattice cells; (c) and (d) are un-
normalized and normalized inverse lattice cells. The equations implemented
by each of these cells are illustreted on the figure. The z-1 operator is
interpreted 8s the delay matrix T when the cells map vectors gn and Yn into
vectors g“*l and Yn+1. When the vectors U and V® fill up sequentially in

time, the lattice cells see scalar sequences and the z-1

operator works just
like a scalar delay. When these cells are concatenated, then the lattice
structures of Figure 4 are constructed.

Denote the intermal variables in the lattice as follows:

n vn
%o 0
n vn
%4 1

"$
<

In the forward (reverse) lattice, u: is the internal variable at the output

(input) of cell n at time i; v: is the input to cell n+l at time i in both

lattices.

Think of the forward lettice as &8 linear transformation that maps the

input sequence Qo into the spsce-time sequence
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Figure 4.

Lattices : (a) forward, (b) Inverse.
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[ t-1]

while generating the interval variables gn and !n. The space—time sequence
W contains upper lattice variable at cell n and time n for 2n=0,1,...,t-1.
Think of the inverse lattice as 8 linear transformation that maps ¥ imto go

while generating the internal variables U® and V°.

4.1 Forward Lattice

The forward lattice may be used to (i) convert correlations {rn};_l

into reflection coefficients [kn}ghl, variances {c:];—l. and "impulse

responses” {_l_xn] ;-lin the factorization R2=HDH'. (ii) convert reflection

coefficients {kn};_l into variances {ai};—l and whiteners (a") in the

factorization R_l = AD_zA'. and (iii) whiten correlated data {xn}z-l t

[}

obtain uncorrelated random variables in the analysis representation Du = Ax.
The Levinson procedure is really e composite procedure comsisting of (i) and

(ii) above.

(i) Correlations to reflection coefficients, variances, and impulse

responses. When yo and !0 are set with the initial conditions required im
the LeRoux-Gueguen algorithm them at the upper and lower branches of the

forward lattice one observes
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Note that the non-zero entries im V® that contain information about |

th

appear as trailing entries with delay n. This means the n cell need not

be switched into the lattice until time n. At this time the output g;-l in

g"l = g"l is available to compute kn= -g:_l for wuse in cell n, 1In

summary, the correlation sequence (rg, ry, ..., T4 1) may be fed
sequentially into a forward lattice in which cells are computed and switched

in sequentially to produce reflection coefficients, variances, and "impulse
2.n 2 .
responses cng . The elements of B in  the LeRoux-Gueguen algorithm

appear sequentially in time for all values of n less than or equal to the
carrent valune of time. Thus the lattice procedure produces the Cholesky
factor H, row-by-row., This was Friedlander's imsight. The procedure is
illustrated in Figuore 5. Note that initial conditions are set to zero.

To complete the discussion, we note that one can stand at cell n and
observe the evolution of cign sequentially in time. This is a column—by-

column procedure.

(ii) Reflection coefficients to variances and whiteners. When go = !o

= (1,0,...,0)’, then at the upper and lower branches of the forward lattice,

one observes
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This row is This column is
read out at time n. observed for sequential
evolution of _}ln.
Figure 5.
Reading Cholesky Factors out of the lattice.
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If the lattice cells are wired together, as in Figure 4, then the entries in
90 = (1,0,...,0)’ may be sent in sequentially and the entries in U® and V°
may be read out sequentially. This follows from the caussl dependence of
§n+1 and Yn+1 on U® and V®. Thus, given the reflection coefficients (k)
required to build the lattice, an impulse may be sent in to gemerate order
increasing whiteners Jgn which may be read out as leading entries of
VD = A", They may be read out sequentially to produce the factorization r1
= AD™23’, row-by-row. But, a&s the whiteners a® show up immediately as
leading entries of A" in each 1lattice cell, the 1lattice cannot be

sequentially wired as in Figure 5. It must be completely wired from all of

t-1

the reflection coefficients {kn}l . This is illustrated in Figure 6.

An alternative is to gemerate cells sequentially, and then after each
new cell is computed end switched into the lattice, compute the impulse
response of the new lattice. Each step of the procedure produces A" = (Ja@,
0)'. This composite procedure is, in fact, a Levinson-Durbin procedure.

(iii) Correlated data to uncorrelated data. If the forward lattice is

excited with correlated inputs (‘0'11""'xt—1)' then the variables observed

in U® are
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i .
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- a =1 at-1
— 0” * t-n-1
0 0 0 0 . .
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This rov is read out [This column is observed
at time n. . for sequential evolution of a .

Fiqure 6.

Reflection Coefficients to Whiteners.
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The variable u: is the nth entry in the vector Du:

Du = Az

If the normalized forward lattice is excited with (xo,....xt_l). then the

variable u :is the nth entry in the vector u, itself. So, by reading out
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time variables ug. ui.....ni:i from the appropriate cells, st the

appropriate times (in fact the time equals the cell pumber), we read oot a
white sequence of uncorrelated random variables with normalized varianmces.

The same story holds for the unnormalized lattice, except now the variable
u2 bas variance cri. This Gram—Schmidt orthogonalization is illustrated

in Figure 7,

4.2 Inverse Lattice

The inverse lattice may be used to (i) convert reflection coefficients

t-1
0

t-1

. 2 . . t-1 -
{kn}o and variances {on] , into correlations {rn]o and "impulse

responses” {g“};'l. (ii) convert the highest order whitener gt—l into

reflection coefficients {kn};_l, and lower order whiteners, and (iii) color

uncorrelated random variables Du to obtain correlated random variables in

the representation x = HDu.

(i) Reflection coefficients and variances to correlations and impulse

responses. From Figure 5 we see that initisl conditions may be set to zero
and the correlation sequence may be sent into the lattice, to generate the

space-time vector

This means initial conditions may be set in the inverse lattice in exactly

2

the same way they were set in the forward lattice, with op” at the input to

the first cell and zeros elsewhere, to produce an impulse response for
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Fiqure 7.
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Whitening, Analysis or Gram~-Schmidt orthogonalization
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the inverse lattice which generates the internal varisbles H® = (0, h™)

and the output sequence {rn];-l. This generalizes the Robinson-Treitel

result, to include the gemeration of Cholesky factors as intermal lattice
variables, It is illustrated in Figure 8.

(ii) Highest order whitemer to reflection coefficients and lower order

whiteners. From Figure 6 we see that initial conditions may be set to zero,
and a 1 placed at the input to the first cell, to produce the order-
increasing whiteners 8™ (or Ja®) as internal variables in the lattice. The
ouput of the (t-1)st cell contains Qt-l = !t_l on the upper branch. This
means the initial conditions may be set to zero, and the sequence
t-1 t-1

t-1

(1, 8, eees 8 ) sent into the inverse lattice to produce all of the

lower order whiteners as internal variables., The 1lattice must be fully
connected to achieve this. See Fignre 9.

(iii) Uncorrelated data to correlated data. Recall Figure 7:

with initial conditions set to zero and the input equal to

(x ), the uncorrelated random variables n: are observed at cell

op xl.....!t_l
n at time n, Thus, an inverse lattice may be set with zero initial

conditions and excited with uncorrelated random variables ng. ui.....u:.....

n::: » each entered at the appropriate time and place (cell n, time n), to

produce the correlated output (xo, xl.....xt_l). This is illustrated in

Figure 10,
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Generating Cholesky Factors and Correlations from

Reflection Coefficients.
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Coloring or synthesis of correlated data.
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5. Autoregressive Moving Average Sequences

So far we have dealt exclusively with a wide—sense stationary time

series {x ] whose correlation sequence {r;} is even and non—negative

t-1
definite. A finite record of the series {§J 0 has & correlation matrix

R which is symmetric, Toeplitz, and non-negative definite. ¥Fe now
speciaslize our results to the case where the correlation sequence obeys the

coupled autoregressive moving average (ARMA) recursions

Such a correlation sequence is said to be ARMA (p,p).
Vhenever thkese recursions hold for the correlation sequence, tae
underlying time series itself is said to be ARMA (p,p). It obeys the

autoregressive moving average recursion

a8 x =
n t-n n t-n

0

I NAS
It NAT
o
o

{ut]: sequence of uncorrelation random variables with unit variance.
The operator or transfer function representation of {xn) is

A(z)(x,} = B(z) {ut]
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A(z) = } anz—n: B(z) = } bnz—n
n=0

n=0

This may also be written as an infinite moving average,

{xy) = B(z) {ug) ,
where the transfer function H(z) obeys the recursion

A(z)H(z) = B(z)

The spectrum R(z) H(z)H(z™1) obeys the recursion

A(z)R(z) = B(z)H(z™1)

5.1 Stationary Wold Representation

The sequence {xn} may be decomposed as follows:

_A
X = Xp/e-1 t Bouy

;t/t-l = (H(z) - ho)ut

{B(z)/A(z) - hglu,
This may be rewritten as
A(z) ;t/t—l = (B(z) - A(z)bg) fu,}
Xy = Tg/¢-1 * Bo Uy
Define the polynomials
271a(z) = B(z) - by Alz)
271 P(z) = 1 - A(2)
The previous equations can then be re-cast as follows:

[ A
a1/t = P(2) xp/0 1 + Q2)uy
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A
Xy = xt/t_l + ho ut

A block diagram is illustrated in Figure 11. The variable ;t/t-l is the

minimum mean-squared error prediction of 3 besed on the infinite past
{---01. uo. “ees nt_ll.

For this structure to be used as & synthesizer of a stationmary time
series, the inputs o, must be initiated infinitely far in the past.

Alternatively, the initial conditions im the structure must be set

appropriately, This brings us to the Markovian representation.

5.2 Markovian Representation

The Markovian state space representation corresponding to the
stationary Wold representation is

X¢+1 = F 2, *+ b uy

xy = 8" x¢ + b Uy

u,: sequence of uncorrelated, unit variance random variables

In this state space model, the vectors and matrices are defined as follows:

5

Te/t-1 1
A
Xe+1/t-1 0
x = 8 =
-t . .
x 0
X t+p+1/t-1] [ 7
01 0... 0 hy
F=~ 10 0 1... h= b
. \\\\\\\ 1 .
- .. - h
%p 1] | p
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Figure 11.

Stationary Wold Representation.

by,

—t+1 -x—t

Fiqure 12.

Markovian State-Space Representation.
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The block diagram is illustrated in Figure 12,

The impulse response and correlation sequence for the Markovian

representation has to match that of the stationary Wold representation. The

impulse response is

0, t<0
ht = ho. t=20
s F 7 ln, t>o0

The correlation sequence is
= t
r, = ' F Qo & + by hy
= 2
(ro =8' Qg 5 + hy )

Qy = FQgF’ + b b’

The matrix Qg is the zero-lag state covariance:

Qo = Exgzo’

In order for this structure to synthesize a stationary sequence, the
initisl condition 3z, must be drawn from a distribution with mean zero and
covariance Q.

5.3 Innovations Representation

An innovations representetion allows us to replace the comstant vector

AN R o F AP g - e L W W N 8 R T T o, TR T T N L T S T TR e M e o e e T e i
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L

a

3

-
1 ho bo
a 1 _

1 0 h1 = bl

a a . . . 1 b
"p p-1 J Upl ["p]
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b with & time-varying Kalman gain k,, replace the random ipnitial conditions
with zero initial conditions, and replace the unit variance input sequence

{u;} with a sequence {o,u;) whose variance is time varying. The

representation is
Teel = Fxe + ke of 9y
x, =8' x, + bg oy uy
u;: sequence of uncorrelated random verisbles with unit variance
This representation is illustrated in Figure 13,
For the innovations representation to produce a stationary sequence, we

require the correlation of {xt} to be {r;}. That is, we require

The expression for r: is

where Qt is the zero-lag state covariamce st time t, for this to equal r, we

require
k, o, = ~F(Q,-Qy) + b

2 2 ,
o, = 8'(Q;6)8 + by =1x, -8 D B

This is the usual Ricatti solution givem for the Kalman gain gt

. . . 2 .
and innovations variance ct . But there is another way to go.

In the innovations representation, the output may be written &s a time-

varying convolotion of a time-varying impulse response with the input {“n]:




F ‘/‘—]
o

Figure 13.

Innovations Representation.
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This means the vector of outputs x = (xo. Eis soes xt-l)' may be written

z, - ig ‘ %o - LA -
N : o o |
AR 1
: 0
[ ¥¢-1 ,hg-—l “1—2 v hlt)-l. %-1)  [Pt-1)

or as follows:

bt 1] L

So, in fact, the time wvarying impulse response in the innovations
representation just fills im the Cholesky factorization

R = HD3H’
corresponding to the synthesis

z = Hhy

Why is this importent? Remember we have a fast algorithm for obtaining the

LR . e -t . - .
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columns (or rows) of H. And, from the expression that relates the time

varying impulse response to the Kalman gains we have the result

hll
- p -

This means we can run a fast Cholesky algorithm (either by colummns or rows)

and read out the Kalman gains gn as the entries h1

through h:. This is a

fast Kalman gain algorithm., An sttractive implementation uses the lattice

excited with a correlation sequence {rn];-l. The gains are read out as

internal lattice variables, This is illustrated in Figure 14, Of course
the gains k, inherit the same recursions as h" and g in Chapter 4.

As the final topper to this story, note that the companion matrix F
satisfies its own characteristic equation:

n+p
2 a Fn+p-t= 0
t—-n

t=n

Thus the time varying impulse response h:—n obeys the following recursion:

n+p n+p n+p+l
' -t n -
5 } .t—nFn L } 8¢-n Bnip-t+1 2 Sp+1-t4n h’t‘_ =0
ten t=n t=n+l n

This mesns each column gn may be generated by computing the variance 62. the
n
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Figure 14.

Using the lattice to compute Kalman Gainc.
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Kalman gain En' and then using the gain to initialize the recursion above to

fill out the columns. The same recursions canm be derived for g;+1 [7). This

leads to the Morf, Sidhu, Kailath recursions for kD91,

6. Conclusions

Our conclusions are moch like ounr introductory comments. Forward and
inverse lattices may be used with a variety of excitatiors and inmitial
conditions to produce internal lattice variables which are Cholesky factors
of correlation matrices and their inverses. When the correlation matrix is
ARMA, then these internal variables may be used to generate Kalman gains and
to identify autoregressive parameters. The highest order Kalman gain may be
identified with a stationary impulse respomse to obtsin an estimate of the
moving sverage coefficients.

In references [10] the vector recursions of Section 3.0 are presented
as algorithms that may be implemented on a vector processing machine. In
[11] s fixed length, time varying lattice is derived for implementing the

Morf, Sidhu, Kailath recursions.
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8. Appendix
Begin with the UL factorization of R:
RA’ = HD?
Write out the nth column of thbis equation:
T Tye o o T
n
T, Tye o ¢ T g Ja 2 0
=g
n
n
T¢-1 ¢ ¢ ¢ Tg-1-n] | B
Ignore the zero terms in the right-hand column and write
T T 1 oo T,
. n 2 n
Tl 5 | [ o | b
R
. n .
fey r t-1—nJ ]
or
ozhn = R Ja"
n- n -
A related vector, is R a®
T T o1 T L x
T r [.n] r < "] =
n+1 R 1 21 _ |fan2 1 =
; r. ;B . 0
t-1 T t-1-n . r .
L J ["t-1°""° t-1-n "t-n-2]
0
62 n = o
n | & an
e e e o S DR S SR O




The first term of g", denoted g”;, is zero. Note the definition of R ,; and

summarize these results as follows:

2hn =R Ja° )
a3 &

2 n _ n
Onk Rn 2

Our objective is to derive recursioms for yn, gn. and ci. To this end,

+
add one more row to the equation goverming O +1 gn 1:
Ta+1 *n %o
2 n+l
%n+1 !n+1 = B+ T2
1n+1 T T b
t L t t-1 t-n-1]
2 n+l n+l n+l n+l
a1 1t T Ty tma1 Y Tee1 % Yo o Y Tep1 %o
Use the Levinson—Dnrbin recursion for Jgn+1:
. . n
Ta+l T %o 0 £ \
2 n+l ( n
“n+1 h xn+1 2 * kn+1 0
Fe-1 Tt-n-2
1n+1 r T
L 't [t t-n-1]
R NS SR e L ﬁ__’}‘:-..';‘ RN ,.-’-’-l‘-'.;"‘; P ~l




_ 2 n 2 AD

- on h * kn+1°n l & ]
n, 2
ct/an

From this recursion we note the following recursion for ci:

02 = 02 (1-k
n

2
o+l ) = an(l k

)

AN n
n+1 80 n+1 81

To obtain a recursion for gP, consider

2 n+l 'n+1
n+l n+l -

Add one more row and use the Levinson—Durbin recursions to obtainm

Ta+1 o 0
02 8n+1 - ‘n
+ -
o+l R+ ( +x )
n+l n
T T T2
t-1 t-n-2 0
.n+1 T 4
|t J |t t-n-1]
_ 2 [an 2
- cn £ * kn+1 cn
9n
ol
t
2 o _ n n
L mt T, + a4y Ty + .. . ln t-n

- -
AR R . “ s, - . S e
"3 e et e : o - g -~ I Y W TNy Weg W TPy W e el WO U VD W S N SN O DL Wy Y. . S
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From this recursion we note
AR _ n
kv1 = TBg T 7By )
Substitute into the recursion for o to obtain
2 2 2
© 41 = S, (1 kn+1)
We may summarize the recursions as follows:
0 0
2 n+l 2 n 2 n
%n+1 b °n b 0+1%n E
n+l n, 2
1t ctlcn

(]

0
2 n+ _ 2 n 2 n
6n+1 B - cn E + kn+1°n b
n+l n
B m

If we keep only the relevant terms, and use our previous definitions of

A and © we mey write

2 n+l 2 n 2 ., =
%p+1 B “n A'b ¢ kn+1 °a 2 &

2 atl 2 . n 2 P
%p+1 & = o e tky0 AR

These recursions are initialized as follows:

PUT IR Y W
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